Álgebra lineal Ejemplos

Hallar la ecuación característica (A^t-6I)^-1=[[0,1],[1,0]]
Paso 1
Establece la fórmula para obtener la ecuación característica .
Paso 2
La matriz de identidades o matriz unidad de tamaño es la matriz cuadrada con unos en la diagonal principal y ceros en los otros lugares.
Paso 3
Sustituye los valores conocidos en .
Toca para ver más pasos...
Paso 3.1
Sustituye por .
Paso 3.2
Sustituye por .
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.1
Multiplica por cada elemento de la matriz.
Paso 4.1.2
Simplifica cada elemento de la matriz.
Toca para ver más pasos...
Paso 4.1.2.1
Multiplica por .
Paso 4.1.2.2
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.2.1
Multiplica por .
Paso 4.1.2.2.2
Multiplica por .
Paso 4.1.2.3
Multiplica .
Toca para ver más pasos...
Paso 4.1.2.3.1
Multiplica por .
Paso 4.1.2.3.2
Multiplica por .
Paso 4.1.2.4
Multiplica por .
Paso 4.2
Suma los elementos correspondientes.
Paso 4.3
Simplify each element.
Toca para ver más pasos...
Paso 4.3.1
Resta de .
Paso 4.3.2
Suma y .
Paso 4.3.3
Suma y .
Paso 4.3.4
Resta de .
Paso 5
Find the determinant.
Toca para ver más pasos...
Paso 5.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.2
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.2.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 5.2.2.1
Mueve .
Paso 5.2.2.2
Multiplica por .
Paso 5.2.3
Multiplica por .
Paso 5.2.4
Multiplica por .
Paso 5.2.5
Multiplica por .